

Small units	Large units
Eg. $\quad 4000 \mathrm{~kg}$	4 t
6574 g	$\ldots \mathrm{kg}$
cm	5.63 m
943 cm	$\ldots \mathrm{m}$
$\ldots \mathrm{mm}$	7.321 m
9529 ml	-1
$\ldots \mathrm{ml}$	8.6231
g	83 kg
99 cm	_m
764cl	-1
t	5733 kg
8316 mm	$\ldots \mathrm{m}$
\ldots cl	121
12634 m	$\ldots \ldots \mathrm{km}$
955 m	$\ldots \ldots \mathrm{km}$

The 'size' of a tonne depends on the material used to make it.

A tonne of steel will obviously be smaller in size than a tonne of water.

A tonne is the mass of a cubic metre of water.

Imagine a box in the shape of a cube 1 m by 1 m by 1 m .

If this were filled with water, the water would weigh a tonne. Easy, really!

This amount of water weighs one tonne!

If a swimming pool is $\mathbf{2 m}$ deep, $\mathbf{6 m}$ wide and $\mathbf{2 5 m}$ long, what is the mass of the water in the pool?

Mass

Mass is the amount of material in an object and is measured in kilograms. This stays the same wherever you take the object.

Weight

Weight is the force by which the Earth (or other planet) pulls the object down and is measured in newtons. This changes depending on where you take the object.

For example, if your mass is $\mathbf{4 0} \mathbf{~ k g}$, you will have a mass of $\mathbf{4 0} \mathbf{~ k g}$ whether you are on the Earth, on Mars or on the Moon, because your body has the same amount of material wherever you are.

However, your weight will change because the gravity on Mars and the Moon is not as great as that on the Earth. On Earth your weight would be about $\mathbf{4 0 0}$ newtons, on Mars it would be about $\mathbf{1 5 2}$ newtons and on the Moon only about 66 newtons.

Nelly the elephant was invited to the ball, but when she tried to put on her best dress she realised she had eaten so many buns she no longer fitted into it. She had heard, however, that astronauts were weightless in space, so she hitched a lift on the Space Shuttle.
Unfortunately, when she was in space she soon discovered that, although she didn't have any weight, she still had plenty of mass!

Michael was asked in a science test: 'What is the difference between mass and weight?'

He wrote: 'Mass is when you buy a bag of potatoes. Weight is when you have to carry them home!'

1. What is one half of these units. Give your answer in smaller units. Eg. One half of a kilometre is $\mathbf{5 0 0}$ metres.
a. kilometre
b. metre
c. kilogram
d. litre
e. centimetre
2. What is one quarter of these units. Give your answer in smaller units.
a. kilometre
b. metre
c. kilogram
d. litre
3. What is three quarters of these units. Give your answer in smaller units.
a. kilometre
b. metre
c. kilogram
d. litre
4. What is one tenth of these units. Give your answer in smaller units.
a. kilometre
b. metre
c. kilogram
d. litre
e. centimetre
5. What is one hundredth of these units. Give your answer in smaller units.
a. kilometre
b. metre
c. kilogram
d. litre
6. What is one thousandth of these units. Give your answer in smaller units.
a. kilometre
b. metre
c. kilogram
d. litre
e. tonne

Answers

Page 1

4000 g	4t
6574 g	6.574 kg
563 cm	5.63 m
943 cm	9.43 m
7321 mm	7.321 m
9529 ml	9.5291
8623 ml	8.6231
83000 g	83kg
99 cm	0.99m
764cl	7.641
5.733t	5733 kg
8316mm	8.316 m
1200 cl	121
12634 m	12.634km
955 m	0.955km

Page 2

Water in the swimming pool weighs 300 tonnes

Page 4

1. a. 500 m
b. 50 cm
c. 500 g
d. 500 ml
e. 5 mm
2. a. 250 m
b. 25 cm
c. 250 g
d. 250 ml
3. a. 750 m
b. 75 cm
c. 750 g
d. 750 ml
4. a. 100 m
b. 10 cm
c. 100 g
d. 100 ml
e. 1 mm
5. a. 10 m
b. 1 cm
c. 10 g
d. 10 ml
6. a. 1 m
b. 1 mm
c. 1 g
d. 1 ml
e. 1 kg
